The International Journal of
Robotics Research

http://ijr.sagepub.com/

Robot Motion Planning: A Distributed Representation Approach
Jérbme Barraquand and Jean-Claude Latombe
The International Journal of Robotics Research 1991 10: 628
DOI: 10.1177/027836499101000604

The online version of this article can be found at:
http://ijr.sagepub.com/content/10/6/628

Published by:
®SAGE

http://www.sagepublications.com
On behalf of:
(&]
Multimedia Archives

Additional services and information for The International Journal of Robotics Research can be found at:
Email Alerts: http://ijr.sagepub.com/cgi/alerts
Subscriptions: http://ijr.sagepub.com/subscriptions
Reprints: http://www.sagepub.com/journalsReprints.nav
Permissions: http://www.sagepub.com/journalsPermissions.nav

Citations: http://ijr.sagepub.com/content/10/6/628.refs.html

>> Version of Record - Dec 1, 1991
What is This?

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

www.manaraa.com

http://ijr.sagepub.com/
http://ijr.sagepub.com/content/10/6/628
http://www.sagepublications.com
http://www.ijrr.org/
http://ijr.sagepub.com/cgi/alerts
http://ijr.sagepub.com/subscriptions
http://www.sagepub.com/journalsReprints.nav
http://www.sagepub.com/journalsPermissions.nav
http://ijr.sagepub.com/content/10/6/628.refs.html
http://ijr.sagepub.com/content/10/6/628.full.pdf
http://online.sagepub.com/site/sphelp/vorhelp.xhtml
http://ijr.sagepub.com/

Jérome Barraquand
Jean-Claude Latombe

Robotics Laboratory
Department of Computer Science
Stanford University

Stanford, California 94305

Abstract

We propose a new approach to robot path planning that
consists of building and searching a graph connecting the
local minima of a potential function defined over the
robot's configuration space. A planner based on this
approach has been implemented. This planner is consider-
ably faster than previous path planners and solves prob-
lems for robots with many more degrees of freedom
(DOFs). The power of the planner derives both from the
“‘good’ properties of the potential function and from the
efficiency of the techniques used to escape the local min-
ima of this function. The most powerful of these tech-
niques is a Monte Carlo technique that escapes local min-
ima by executing Brownian motions. The overall approach
is made possible by the systematic use of distributed rep-
resentations (bitmaps) for the robot’s work space and
configuration space. We have experimented with the plan-
ner using several computer-simulated robots, including
rigid objects with 3 DOFs (in 2D work space) and 6 DOFs
(in 3D work space) and manipulator arms with 8, 10, and
31 DOFs (in 2D and 3D work spaces). Some of the most
significant experiments are reported in this article.

1. Introduction

In this article we propose a new approach to robot
path planning that is based on the systematic use of
" a hierarchical bitmap to represent the robot work
space. This “‘distributed’” representation, which
strongly differs from the ‘‘centralized’’ semialgebraic
representations used in most path-planning algo-
rithms so far, makes it possible to define simple and
powerful numeric potential field techniques. Using

Barraquand is now with the Paris Research Laboratory of Digital
Equipment Corporation (DEC), 85 Avenue Victor Hugo, 92563
Rueil-Malmaison Cedex, France.

The International Journal of Robotics Research,
Vol. 10, No. 6, December 1991,
© 1991 Massachusetts Institute of Technology.

628

Robot Motion Planning: A
Distributed Representation
Approach

such techniques, we implemented a planner that is
considerably faster than previous path planners and
solves problems for robots with many more degrees
of freedom (DOFs).

The principle of our approach is to construct colli-
sion-avoiding attractive potential fields over the
work space. Each of these potentials applies to a
selected point in the robot, called a control point,
and pulls this point toward its goal position among
the obstacles. The work space potentials are then
combined into another potential function defined
over the configuration space of the robot. This new
potential attracts the whole robot toward its goal
configuration.

Each work space potential is computed over the
bitmap representation of the work space (at some
resolution) in such a way that it has no other local
minimum than the desired final position of the
robot’s control point it applies to. Therefore it can
be regarded as a numeric navigation function as
introduced in Koditschek (1987). Such a ‘“*perfect”
potential tends to keep the robot outside the work
space concavities created by the obstacles. When
the work space potentials are combined together
(i.e., when they are applied concurrently to the var-
ious control points), the resulting configuration
space potential may have (and indeed has) local min-
ima other than the goal. However, it is usually pos-
sible to define the combination in such a way that
either the number of minima or their domains of
attraction remain relatively small. The idea is then
to build a graph connecting the local minima and to
perform a search of this graph until the goal is
attained. If the goal cannot be achieved, the planner
repeats the whole process at a finer level of resolu-
tion in the work space pyramid. It stops when either
a path has been found (success) or the maximal res-
olution has been attained (failure).

In order to build the local minima graph, our
approach requires efficient techniques for escaping

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

the local minima. In this article we describe two
such techniques. One is a brute force technique that
exhaustively explores the local minimum wells in the
discretized configuration space. The other is a
Monte Carlo technique that escapes local minima by
executing Brownian motions. The second technique
turns out to be very powerful and has solved tricky
path-planning problems for robots with many DOFs.
Furthermore, it is highly parallelizable. However,
for robots with few degrees of freedom, the first
technique is faster on a sequential computer. In
addition, it is deterministically resolution complete,
whereas the Monte Carlo technique is only probabil-
istically resolution complete.

We have implemented the planner in a program
written in C language and run on a DEC 3100 MIPS-
based workstation. (All the running times given in
this article refer to this implementation.) We have
experimented with the implemented planner using
several computer-simulated robots, including rigid
objects (‘‘mobile robots’’) with 3 DOFs (in two-
dimensional work spaces) and 6 DOFs (in three-
dimensional work spaces) and articulated objects
(“*manipulator arms’’) with 8, 10, and 31 DOFs (in
two- and three-dimensional work spaces). Some of
the most significant experiments are reported in this
article. Our planner demonstrated the following
capabilities:

. It is much faster than any previous planner. For
instance, it generates paths for a holonomic 3-
DOF mobile robot in nontrivial work spaces in
about 1 s of computation, as opposed to minutes
or even tens of minutes for many other plan-
ners.

It generates paths for robots with many DOFs. In
particular, within a few minutes of computation,
it constructs complex paths for a 10-DOF non-
serial manipulator arm with both revolute and
prismatic joints.

It solves path-planning problems for multiple
robots. For example, without domain-specific
heuristics, it can generate the coordinated paths
of two 3-DOF mobile robots in a work space
made of narrow corridors.

In addition, the algorithms are highly paralleliza-
ble. This allows us to envision an implementation of
the planner using specific hardware for generating
paths in real time, even for robots with many DOFs.
Another advantage of the planner is that it accepts
goals defined by specifying the desired positions of
one or several points in the robot. This feature is
essential when robots have many DOFs, as specify-
ing the goal configuration of the robot (i.e., a colli-

sion-free placement of the various bodies of the
robot) is a difficult task in itself. It also allows the
easy handling of any kind of redundancy of the
robot. Finally, a version of the planner (not
described in this article) generates paths for nonho-
lonomic robots—I.¢., robots with nonintegrable
kinematic constraints such as a car and a car towing
a trailer; this version of the planner is described in
Barraquand and Latombe (1989a; 1990).

This article is organized as follows. In section 2
we relate our work to previous research. In section
3 we describe the distributed representations of the
work space and the configuration space and propose
various techniques for computing the work space
and configuration space potentials. In section 4 we
present a simplified version of the planner that is
applicable to robots with few DOFs (four or less). In
section 5 we show how the use of Brownian motions
for escaping local minima allows us to extend the
planner and solve path-planning problems with
robots having many DOFs.

2. Relation to Other Work

Much research has been devoted to robot motion
planning during the past 10 years (Latombe 1990).
Most of this research has focused on path planning
(i.e., the geometric problem of finding a collision-
free path between two given configurations of a
robot). Today the mathematic and computational
structures of the general problem (when stated in
algebraic terms) are reasonably well understood
(Schwartz and Sharir 1983b; Canny 1988). In addi-
tion, practical algorithms have been implemented in
more or less specific cases (Brooks and Lozano-
Pérez 1983; Gouzenes 1984; Laugier and Germain
1985; Faverjon 1986; L.ozano-Pérez 1987; Faverjon
and Tournassoud 1987; Barraquand et al. 1989; Zhu
and Latombe 1989).

One of the most widely studied path-planning
approaches is the “‘cell decomposition’ approach
(Schwartz and Sharir 1983a; Brooks and Lozano-
Pérez 1983). It consists of first decomposing (exactly
or approximately) the set of free configurations of
the robot into a finite collection of cells and then
searching a connectivity graph representing adja-
cency relation among these cells. However, in this
approach, the number of cells to be genecrated is a
function of (1) the number of polynomial constraints
used to model the robot and the obstacles and (2)
the degree of these constraints. This function also
grows exponentially with the number of DOFs (n) of
the robot, as the volume of the configuration space
(locally diffeomorphic to R") increases exponentially

Barraquand and Latombe 629

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

with n. Thus the approach is intractable even for
reasonably small values of n. To our knowledge, no
effective planner has been implemented using this
approach with n > 4. In fact, this is also true of the
other so-called ‘‘global’”” methods—e.g., retraction
(O’Dunlaing et al. 1983)—which also represent the
connectivity of free space in the form of a graph
before actually starting the search for a path.

Some approximate cell decomposition methods
proceed hierarchically by decomposing the configu-
ration space into rectangloid cells organized at sev-
eral levels of resolution. For example, Faverjon
(1984) uses an ‘‘octree’’ to represent a three-dimen-
sional configuration space. Each cell is labeled as
EMPTY if it intersects no configuration space obsta-
cle, FULL if it lies entirely in configuration space
obstacles, and MIXED otherwise. Although there
may be a loose resemblance between such a tree
and the hierarchical bitmap representations used in
our planner, the two approaches are very different.
In particular, our planner does not attempt to explic-
itly approximate the configuration space obstacles as
collections of cells.

Because the intractability of the cell decomposi-
tion approach—and more generally of the other
global path-planning methods—is caused in part by
the precomputation of a connectivity graph repre-
senting the ‘‘global’’ topology of the robot’s free
space, “‘local’’ methods to path planning have been
developed for handling more DOFs, and some suc-
cessful systems have been implemented (Donald
1984; Faverjon and Tournassoud 1987). A local path-
planning method consists of placing a grid (at some
resolution) over the robot configuration space and
scarching this grid. Heuristics computed from partial
information about the geometry of the configuration
space are used to guide the search. Thus a local
method requires no expensive precomputation step
before starting the search of a path. In favorable
cases, it runs substantially faster than any global
method. However, because the search graph (i.e.,
the grid) is considerably larger than the connectivity
graph searched by global methods, it may require
much more time than global methods in less favora-
ble cases.

In order to deal efficiently with the large size of
the grid, local methods need powerful heuristics to
guide the search. However, such known heuristics
have the drawback of eventually leading the search
to dead-ends from which it is difficult to escape. For
example, a widely used heuristics consists of guiding
the robot along the negated gradient of an artificial
potential field (Khatib 1986). However, this tech-

nique may get stuck at local minima of the potential
and provides no systematic way to escape these
minima. The probiem of defining an analytic ‘‘navi-
gation function™ (i.e., a potential field with a unique
minimum at the goal configuration in the connected
component of the free space containing the goal con-
figuration of the robot) has been investigated with
only limited success so far. Solutions have been pro-
posed only in Euclidean configuration spaces when
all the configuration space obstacles are spherical or
star-shaped objects (Rimon and Koditschek 1989).
Furthermore, if such a navigation function could be
defined in the general case, its computation would
probably be expensive and would constitute a pre-
computation step before search, similar in drawback
to the construction of the connectivity graph in the
cell decomposition approach. Along another line of
research, paths for an 8-DOF manipulator have been
generated with a variant of the potential field
method, called the constraint method (Faverjon and
Tournassoud 1987). Although impressive, this result
has been obtained in specific work spaces where all
the obstacles are vertical cylindrical pipes, with
interactive human assistance for moving the robot
out of the encountered local minima.

Recently, we have developed a potential-based
approach using a numeric valley-tracking algorithm
(Barraquand et al. 1989) to escape the local minima
of the potential function. The planner was able to
generate paths for a 10-DOF manipulator arm with a
nonserial kinematic chain. (An example with the
same arm will be given in this article.) However, the
planner implemented using this approach was quite
slow and not very reliable. In particular, it failed to
solve several problems that the planner described in
the present article has been able to solve. Neverthe-
less, the approach described later derives from this
earlier work,

The problem of generating paths for multiple
robots has attracted some attention (Schwartz and
Sharir 1983¢; Kant and Zucker 1986; Erdmann and
Lozano-Pérez 1986, O’Donnell and Lozano-Pérez
1989). Implemented systems rely on a simple para-
digm with multiple variants—e.g., ‘‘velocity tuning”’
and ‘‘prioritizing”’—which allows one to consider
the individual robots separately or sequentially. This
paradigm makes it possible to build planners whose
time complexity is ‘‘only’” exponential in the maxi-
mum of the numbers of DOFs of the individual
robots, rather than in their sum. However, the para-
digm is incomplete and is unable to solve problems
in which robots “‘strongly’” interact. An example of
such a problem is when two mobile robots have to

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

interchange their positions in a work space made of
narrow corridors. We successfully run our planner
on several examples of this kind.

Since Reif’s carly paper (Reif 1979), the computa-
tional complexity of path planning has been ana-
lyzed by many authors when the problem is stated
in semi-algebraic form (Schwartz and Sharir 1988).
The bitmap representations used in our planner may
open new perspectives on some computational com-
plexity aspects. The worst-case complexity of our
planner is still exponential in the number of DOFs
(i.e., the dimension of the configuration space).
However, although planners using semi-algebraic
representations are time polynomial in the number
of polynomial constraints and their maximal degrees,
our planner is polynomial in the inverse of the maxi-
mal resolution of the bitmap description.! One may
argue that, unlike semi-algebraic models, the bitmap
representation is not ‘‘exact.”” However, when com-
pared with the real world, neither of these repre-
sentations is exact, and both can be made as precise
as one wishes by increasing the resolution of the
bitmap, for one representation, and the number
and degrees of the semi-algebraic constraints, for
the other representation.

3. Distributed Representation and Potential
Fields

3.1. Work Space Representation

Let & denote the robot, W its work space, and 4 its
configuration space. A configuration of the robot
(i.e., a point in €) completely specifies the position
of every point in & with respect to a coordinate sys-
tem attached to W (Lozano-Pérez 1983). Let n be
the dimension of €. We represent a configuration g
€ € by a list of n parameters (g, . . . , g,), with
appropriate modulo arithmetic for the angular
parameters (Latombe 1990). The subset of € consist-
ing of all the configurations where the robot has no
contact or intersection with the obstacles in W is
called the free space and is denoted by %...

The work space W is modeled as a multiscale pyr-
amid of bitmap arrays, each of which is N-dimen-
sional, with N = 2 or 3 being the dimension of W.
At any given resolution level, the array is defined by
the following function BM:

BM : W — {1, 0}
x +> BM(x)

1. Different complexity measures with nonalgebraic models were
previously given in Lumelsky (1987).

in such a way that the subset of points x such that
BM(x) = 1 represents the work space obstacles,
and the subset of points x such that BM(x) = 0 rep-
resents the empty part of the work space. We write:
Wempry = {x / BM(x) = 0}. Figure 1 displays the
bitmap representation of a particular two-dimen-
sional work space at the 2567 resolution (1 = black;
0 = white).

For each point p € &, one can consider the geo-
metric application that maps any configuration g =
(gis . . ., qn) € € to the position x € W of p in the
work space. This map:

X:dxXxe—->W
P a)~>Xp, q) =x

is called the forward kinematic map.

The work space representation is given to the
planner at the finest level of resolution, typically
5122 or 256° for a two-dimensional work space and
128 for a three-dimensional work space. The other
levels are automatically derived from it in a conserv-
ative fashion. The scaling factor between two suc-
cessive levels of resolution is 2, but a different fac-
tor could have been chosen.

The planner iteratively considers each level of res-
olution in the pyramid, from the coarsest to the fin-
est, until it generates a path or exits with failure. At
each level of resolution, it computes the various
potential functions in the same fashion, using the
bitmap array at the current level of resolution. We
now describe these computations.

al

Fig. 1. 2567 bitmap representation of a work space.

Barraquand and Latombe 631

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

3.2. Extraction of the Work Space Skeleton

Let py, . . ., ps be s given points in o, called con-
trol points. For each point p; we construct a func-
tion:

Voi @ X € Wepmpny = Vp(x) ER

called the work space potential. Next, we combine
these potentials into another potential function U
defined over the configuration space:

U: g€ %p. Ul
= G(Vp,(X(py, 90, . .., Vo (X(ps, 9))) ER.

U is called the configuration space potential. The
construction of the Vs is described in this subsec-
tion and the next. The construction of U is
described in section 3.5.

In constructing the work space potentials V,,, we
have two goals:

[. We want each function V,, to have a single
minimum at the goal position of the point p;.
This is a major heuristic step toward the con-
struction of a configuration space potential with
few or small spurious local minima.

2. We want the path obtained by following the
negated gradient of V,,, from any initial posi-
tion of p;, to lie as far away as possible from
the obstacles in order to maximize the maneu-
vering space of the robot.

To achieve these goals, we compute each work
space potential in two steps. First, we compute the
discrete L' (Manhattan) distance d,(x) from every
point x € W,y to the obstacles and we simultane-
ously extract a subset & of W of co-dimension 1. We
call this subset the work space skeleton. In two
dimensions, it is a network of one-dimensional
curves similar to the skeleton widely used in mathe-
matic morphology (Serra 1982) and to the general-
ized Voronoi diagram (Lee and Drysdale 1981). Sec-
ond, we compute the potential functions V,, using
both the d; map and the skeleton &. The first step is
detailed later in this section. The second is
described in the next subsection.

The distance d;(x) between every point x €
W empty and the obstacles is computed as follows:
First, the points in the boundary of the obstacles are
identified, and the value of &, at these points is set
to zero (we also include the points in the frame
bounding the bitmap as boundary points). Then,
starting from these boundary points, we apply a
wavefront expansion procedure that recursively
labels all the points in W, . More precisely, the
values of d, at all the neighbors of the boundary

632

points are set to 1; the value of d, at the neighbors
of these points, if not yet computed, is set to 2; etc.
The procedure is repeated until all the points in

W empry have been attained. Figure 2 displays con-
tours of the d; map thus computed for the work
space shown in Figure 1.

In parallel, we compute the work space skeleton
& as the set of points where the ‘“‘waves’” issued
from the boundary points of W.,,,,, meet. This is
done by propagating not only the values of d,, but
also the points in the boundary of W, that are at
the origin of the propagation. Figure 3 displays the
skeletons computed in several work spaces, includ-
ing the work space of Figure 1. Every connected
component of the work space vields a connected
component of the skeleton &.

The computation of both d, and ¥ is not local and
therefore must be done prior to the execution of the
rest of our path-planning algorithm. However, the
time complexity of the algorithm is linear in the
number of points in ‘W and constant in the number
and the shape of obstacles. Its implementation is
quite fast (a fraction of a second for a 256* bitmap
array).

From a conceptual point of view, neither the
choice of the L' metric nor the precise definition of
the skeleton is very important for the rest of our
path-planning approach, as the potential functions
are only used as heuristics. Instead, we could have
used the more classic L? distance and computed the
generalized Voronoi diagram for that metric. How-
ever, as mentioned earlier, the construction of the
work space potentials over W,y IS @ necessary
preliminary step before the rest of our path-planning

a

7

N ZAN

Fig. 2. Contours of the d; map in the work space of Fig.
1.

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

Fig. 3. Examples of work space skeletons.

algorithm can be executed. The computation of the

L' distance is faster than the computation of the 12

distance. Notice also that unlike the earlier compu-

tation of &, the time complexity of constructing the

algebraic description of the L? Voronoi diagram of a
polygonal work space increases with the number of
vertices of the obstacles.

3.3. Work Space Potential Fields Without Local
Minima
The bitmap description of the work space allows us
to compute a numeric navigation function—i.e., a
collision-aveiding attractive potential field defined
over the work space bitmap that has no other local
minima than the goal. Such a navigation function
happens to be very helpful for avoiding concavities
of the work space obstacles.

We propose two algorithms, NF1 and NF2, for
computing numeric navigation functions. NF1 is
simpler and does not make use of the map d, and
the skeleton &. NF2 is slightly more involved but
has the advantage of producing work space poten-
tials that keep the control points as far away as pos-
sible from the obstacles.

NF1 computes the work space potential V, for
every control point p by using a wavefront expan-
sion technique starting at the goal position Xz, of p.
The value of V,, is first set to 0 at xz..,. Next, the
value of V,, at the neighbors of xzo0: In Wy is set
to 1, the value of V, at the neighbors of these neigh-
bors in W...pry is set to 2 (if not previously com-
puted), etc. This procedure is recursively repeated
until the connected subset of W.,,,,, containing x ..
has been completely explored. The complexity of
NF1 is linear in the number of points of the bitmap
description and constant in the number and shape of
the obstacles. Equipotential contours of the resulting
work space potential field for the two-dimensional
work space of Figure 1 are displayed in Figure 4.
This computation was performed in a fraction of a
second.

A property of the function V, thus computed is
that by following the flow of the negated gradient

b /
N

2

]

7.

Fig. 4. Equipotential contours of the work space potential
computed by NFI.

N\

from any initial point x;.;,, we obtain a path between
Xinir 10 Xg0qr (if One exists) that is the shortest one for
the L' distance (at the resolution of the bitmap
array) over all the paths connecting X, 10 Xgoq. In a
three-dimensional work space, this computation may
be preferable to exact methods, as the problem of
computing the exact shortest distance in a polyhe-
dral space is known to be NP-hard in the number of
vertices under any L? metric (Canny 1988).

Notice that NFI computes V, only in the con-
nected subset of W, that contains the goal posi-
tion x,,.. Hence if the initial position x;.; is not in
the same connected component as the goal, the
value of V, is not computed at this point, and we
can immediately infer that there is no collision-free
path for the robot.

However, a significant drawback of this work
space potential is that it induces paths that typically
graze the obstacles in the work space (i.e., it only
achieves the first of the two goals stated in section
3.2). Because several potentials will have to be com-
bined into a configuration space potential U attract-
ing the robot toward a goal configuration, the indi-
vidual work space potentials may compete in such a
way that they produce local minima of U. To reduce
the risk of such a competition and to enlarge the
maneuvering space of the robot, our planner makes
use of a more involved work space potential func-
tion V, computed by the algorithm NF2.

NF2 computes V, in three steps:

1. The first step consists of tracing a line o fol-
lowing the gradient of the distance map 4, from
the goal point xg,.. to the nearest point in the

Barraquand and Latombe 633

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

skeleton &. Once this line is computed, we
include it in &, yielding the ‘‘extended skele-
ton” ¥, = YU o.

2. The second step of the algorithm consists of
labeling all the points of ¥, starting from xgpar.
The label 0 is assigned to xgoq, the label 1 is
assigned to its neighbors in ¥,, and these
neighbors are inserted into a list Q. The point
xy in Q that is at maximum distance 4, from the
obstacles is considered next and removed from
Q; the label I(x;) = U(x;) + 1 is assigned to
its neighbors in ¥, that have not been labeled
yet, and these neighbors are inserted into Q.
This operation is repeated until the list Q is
empty (i.e., the subset of ¥, accessible from
Xgoa has been completely explored). At each
step of the recursion, the list of points in Q is
stored in a balanced tree sorted according to d,
so that each insertion of a new point and
extraction of a point at maximum distance from
the obstacles takes logarithmic time in the size
of O (Aho et al. 1983). At the end of the sec-
ond step, all the points x € ¥, connected to
Xgoar in &, have a label I(x).

3. The third step is a wavefront expansion starting
from the subset S of ¥, labeled at the previous
step. NF2 first gives the label /(x) + 1 to every
neighbor of every point x € §. It then com-
putes the unlabeled neighbors of these neigh-
bors and increments the labels iteratively by 1
until the connected component of W, con-
taining x,,.; has been completely explored.

Figure 5 shows equipotential contours of the work

TS
AR

Fig. 5. Equipotential contours of the work space potential
computed by NF2.

634

space potential computed by NF2 for the work
space of Figure 1. This potential has no other local
minima than the goal. Following its negated gradient
from an initial position leads to generating a path
that lies as far away from the obstacles as possible
by following the safest portion on the work space
skeleton. Like NF1, NF2 only computes V, over the
connected subset of W,,,,.,, that contains xgoa:.

The complexity of NF2 is slightly higher than that
of NF1. Let a be the number of points in the bitmap
array and b the number of points in the augmented
skeleton &¥,. The complexity of NF2 (including the
cost of computing d, and the skeleton) is O(a +
b log b), instead of O(a). For reasonable work
spaces, however, because the skeleton has co-
dimension 1 in the work space, we have

N—UN
bxa ,

with N = 2 or 3 being the dimension of the work
space. For these work spaces, the complexity of
NF2 reduces to

Ola + a¥ "Nlog a)

and hence is linear in a. For the 2567 work space of
Figure 1, it took about 2s for our implementation of
NF2 to compute the work space potential shown in
Figure 5. This time includes the computation of d;
and ¥, which does not have to be repeated if several
work space potentials are computed.

Variants of NF2 can easily be imagined to com-
pute work space potentials with slightly different
properties. For example, in the third step, we could
increment the potential at each iteration by 1/d,,
rather than by 1, and obtain a potential V, that
becomes infinite in the boundary of W.,.,.,. We will
not detail the cosmetics of the computation of
numeric potential fields further. Qur point is simply
to show that a large family of potential functions
with various properties can be built within our dis-
tributed representation approach.

3.4. Discretization of the Configuration Space

Because we represent the work space as a pyramid
of bitmap arrays, it is consistent to discretize the
configuration space 46 into a multiresolution grid
pyramid. The configuration space pyramid has as
many levels of resolution as the work space pyra-
mid, and the resolutions at each level of the two
pyramids are tightly related, as described later.
Let 8 denote the distance between two adjacent
points along the same coordinate axis in a work
space bitmap. In the work space pyramid, § varies
between 8,,;, and 8,..,. For example, if the work

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

space is represented by a pyramid of arrays whose
sizes are ranging between 16% and 5122 and if dis-
tances are measured in percentage of the work space
diameter (‘‘normalized’’ distances), we have 8, =
1/512 and 8,... = 1/16.

We can define the resolution of a grid as the loga-
rithm of the inverse of the distance between two dis-
cretization points in the base defined by the scaling
factor between two successive resolution levels (2 in
our implementation). Hence, in our example, the
resolution r varies between rpu, = —10g2 (8,0x) = 4
and Ymax = _10g2 ((smin) =9

We represent the configuration space 4 as a rec-
tangloid subset of the #n-dimensional Cartesian space
R” by representing a configuration g as a list
(41, . . ., g») of n independent parameters. For any
given work space resolution, say r = —log, (), the
corresponding resolution R; = —log, (4;) of the dis-
cretization along the g, axis of ¢ is chosen in such a
way that a modification of ¢; by A4; = 2~ % generates
a ‘‘small motion’’ of the robot in the work space. By
**small motion’* we mean that any point p € «
moves by less than nbrol x 8, where nbtol is a
small number (typically, 1 or 2).

The relation between the position of a robot point
in the work space and a robot configuration is given
by the forward kinematic map X(p, g). For every
point p € s, a modification of ¢; (i € [1, n]) by 4;
results in a modification of each coordinate x; (j €
[1, NT) of p by:

ox T

s A,
aq,-(p’ q)

If we impose the work space motions to be less than
nbtol x 8, we must have:

4;

pEd,qEGJENLN] \0G;

nbtol x &/ sup (%(P, CI))

nbtol X 8/J%,p.

For a given robot, the numbers J%,, are generally
straightforward to compute. This leads us to com-
pute the resolution R; as:

R,‘ =r + lng (J’sup) + 10g2 (nthI)'

For example, consider a bar of length L moving
freely in a two-dimensional work space. A configu-
ration of the bar can be represented as (xg, vg,),
with x; and y¢ being the coordinates of the center
of mass of the bar in the fixed Cartesian coordinate
system embedded in the work space and 6 being the
orientation of the bar relative to an axis of this sys-
tem. Let us normalize xs, yg, and 6 so that their
values range between 0 and 1. We have:

e =5 =1 and Jo, = aLl2.

If we set nbtol to 2, we get:

Ric=Rys=r—-1 and

Ry = r + logo(wL2) — 1.

This means that we need 2' = 2 times less samples
for xs and y than for the work space representation
at each level of resolution and 1/(+«rL) less samples
for 6. In our implementation, the Ji,,s are input by
hand.

3.5. Configuration Space Potential

In our planner, the goal configurations of a robot are
specified by the goal positions of one or several
points in the robot. By definition, the robot is at a
goal configuration whenever all the control points
are at their goal positions. For instance, if s is a
two-dimensional object that can both translate and
rotate in the plane (three-dimensional configuration
space), the specification of the goal positions of two
points uniquely determines the goal configuration of
the robot. If & is, say, a 10-DOF manipulator arm,
then specifying the desired positions of some points
in the end effector determines a goal region in con-
figuration space.

It is important that a path planner allows specifi-
cation of a goal region in configuration space.
Indeed, for many tasks, the goal configuration is
incompletely specified. Arbitrarily selecting one
would possibly result in a more difficult or impossi-
ble path-planning problem. Furthermore, if the robot
has many degrees of freedom, specifying a unique
goal configuration is a difficult task in itself, as it
requires collision-free placement of the various bod-
ies of the robot to be found.

The points used to specify the goal configurations
of a robot are exactly those that are later used by
the planner as the control points. Let py, . . . , p, be
these points. The configuration space potential U is
defined as a combination:

U(q) = G{V,[X(p1, @), . . ., V,.[X(ps, 91}

of the work space potentials V., i = 1,...,s,
defined for the s control points p;. This combination
concurrently attracts the different points p; toward
their respective goal positions. G is called the arbi-
tration function. This terminology reflects the facts
that the various control points may compete to
attain their goal positions and that the function G
arbitrates this competition.

In most of the previous collision-avoidance sys-
tems using artificial potential fields, G was chosen

Barraquand and Latombe 635

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

as a linear combination of the work space potentials
(Khatib 1986); i.e.,

i=5

»)’s) = z AI'yl"

i=1

G(qu LR

This simple choice seems natural, because it does
not favor one control point over the others. How-
ever, precisely for that same reason, it tends to
increase the number of conflicts among the control
points, thus producing numerous undesired local
minima.

The choice of the function G is important, as it
highly influences the number of local minima of the
potential U. With our ‘‘perfect”” work space poten-
tials, the work space concavities do not directly cre-
ate local minima. It is the concurrent attraction of
the different control points toward their respective
goal positions that creates these local minima.2 This
results from the fact that these points do not move
independently. As suggested earlier, the function G
precisely defines the way in which the competition
between the different points is to be regulated.

The choice of G that seems to minimize the num-
ber of local minima is:

i=s
GO, .- v v ys) = miny;.
Indeed, this competition function favors the attrac-
tion of the point that is already in the best position
to reach its goal. However, when one point has
reached its goal position, the potential field is identi-
cally zero, and it does not attract the other points
toward their goal positions. A solution to avoid this
problem is simply to add another term to the arbitra-
tion function:

i=s i=s

,¥s) = min y; + £ max y; (1)

i=1 i=1

G(y|. ..

where ¢ is a small real number. In our experiments
with robots with few degrees of freedom (see section
4), we obtained the best results with £ = 0.1. How-
ever, the best value of £ may depend on the robot.
Another choice for G is:
1=5

, ¥s) = max y;. (2)

i=1

Gy, . ..

This choice tends to increase the number of compe-
titions between the control points and, therefore, the
number of local minima. However, it can be a good

choice for robots with many DOFs. As a matter of
fact, the number of local minima is not the only
measure for the quality of the potential, as it might
be much more difficult to escape a local minimum
with a small attractive well than a minimum with a
large well. The above competition function increases
the number of local minima, but experiments show
that in general it also reduces their volumes. This is
the function that gave the best results for planning
the paths of manipulator arms with many DOFs and
multiple control points (see section 5).

Unlike the work space potentials V,,,, the configu-
ration space potential U does not have to be pre-
computed before actually searching for a path. In
fact, in high-dimensional configuration spaces, this
precomputation would be intractable. The function
U is only computed during the search of a path at
those configurations that are attained by the search
algorithm.

4. Fast Path Planning for Robots With Few
DOF's

We have implemented two versions of our planner,
called the Best-First Planner (BFP) and the Ran-
domized Path Planner (RPP). These two versions®
differ mainly in the way the local minima of the con-
figuration space potential function are escaped. In
this section we present the simplest version of the
planner, BFP. This version is fast for robots with
few DOFs (less than five), but it is only applicable
to these robots.

BFP iteratively considers each level of resolution
in the work space pyramid, from the coarsest to the
finest. It terminates with success as soon as it has
generated a path. It terminates with failure if, after
having considered the finest bitmap, it still has not
generated a path.

At each level, BFP performs a best-first search
(Nilsson 1980) of the collision-free subset 6., of the
configuration space grid using the potential U/
defined in formula (1) as the heuristic function. If r
is the resolution of the work space bitmap, R; = r
— log; (Ji,,) — loga (nbtol) is the resolution of the
discretization along each g; axis in 6, for every i =
1 to n. The successors of a configuration in the
search graph are all its neighbors lying in €s... In
our implementation, we chose the n-neighborhood,
which means that two configurations are neighbors
iff 1 to n of their coordinates differ by a single incre-

2. As we will make explicit later, local minima may also appear in
the boundary of .. at configurations where the gradient of the
potential function U is not zero.

636

3. In fact, the two versions are blended in a single program that
offers two options. In this article we distinguish between BFP and
RPP to make the presentation clearer.

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

ment, the others being the same. Hence each con-
figuration may have up to 3" — 1 neighbors. The
size of this neighborhood is reasonable because, for
other reasons, » has to be small.

As long as the best-first search process does not
reach a local minimum of the function U, the search
reduces to following the negated gradient of the
potential (fastest descent procedure). When a local
minimum is reached, the search algorithm simply
fills up the well of the local minimum until it reaches
a saddle point. Then the search proceeds again along
the negated gradient of U. It stops when the goal
configuration is attained.

At this stage, there is an important aspect of the
algorithm that we must make precise. The use of the
poteatial U to guide the search does not guarantee
that there will be no collision of the robot with the
obstacles. Therefore whenever the planner considers
a new configuration q in €, it should check that it
lies in the free space. Because the planner does not
represent the configuration space obstacles explic-
itly, the verification is done in the work space using
a simple divide-and-conquer technique. To illustrate
the idea, let the robot be a line segment of length L
in a two-dimensional work space. We assume that
the motion increments in the configuration space
grid are small enough so that if the robot is in free
space at one discretized configuration, it cannot lie
entirely inside an obstacle at a neighboring configu-
ration. Using the precomputed 4, map, we obtain
the distances dy(begin) and d,(end) of the two end
points of the segment representing the robot at the
configuration g. If the minimum of these two dis-
tances is smaller than the length L of the segment,
then we are certain that the robot does not hit any
of the obstacles at g. Otherwise, we divide the seg-
ment into two segments of equal lengths and repeat
the computation recursively for the two segments.
In two-dimensional work spaces, this computation
can easily be generalized to robots whose bounda-
ries consists of straight edges and/or curve segments
of higher degrees (e.g., circular and elliptical arcs)
by treating each segment separately. In three-dimen-
sional work spaces, the computation can be
extended as follows to robots made up of three-
dimensional bodies: Assume first that the robot is a
triangle whose vertices are vy, v2, and vs. If the
maximum of the distances d,(v;), d,(v;), and d,(v3)
is greater than the maximum of the lengths of the
edges of the triangle, then we are certain that the
configuration is collision-free. Otherwise, we divide
every edge of the triangle in two equal segments and
repeat the test recursively for the four triangles
whose vertices are vy, vz, v3, and the edge mid-

points. This computation is extended to robots
described as collections of polyhedra by triangulat-
ing the faces of the polyhedra and considering the
generated triangles separately.

Remark. One may argue that the need for collision
checking would be eliminated if we used a potential
tending toward infinity in the boundary of €s...
However, it must be noticed that the computation of
such a potential at any configuration g includes the
computation of the shortest distance between the
robot at ¢ and the obstacles. Hence it includes the
computational cost of making the above collision
test.

0

Note here that two types of local minima can be
attained: the natural minima of I/ (where the gra-
dient is zero) and the minima located in the bound-
ary of €.. (where the gradient is nonzero in gen-
eral). Both types of minimum are escaped in the
same fashion.

We have implemented BFP in a program written
in C language and run on a DEC 3100 MIPS-based
workstation. We have experimented with this pro-
gram using a ‘‘mobile robot”’ with two DOFs of
translation and one DOF of rotation—namely, a
long rectangle in a two-dimensional work space. Fig-
ure 6 shows a path generated by the planner that
demonstrates the ability of the planner to produce
complex maneuvers. In this example, the configura-
tion space potential was computed using formula (1)
with two control points located at the two extremi-
ties of the bar. The path was generated in a 256%
work space bitmap. The running time of the planner

al

Fig. 6. Path generated for a 3-DOF mobile robot.

\RE_=

g

Lo
=

Barraquand and Latombe 637

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

was 1 s. This is three orders of magnitude faster
than the running times reported in Brooks and Loz-
ano-Pérez (1983) for similar (though apparently sim-
pler) path-planning problems. Roughly one order of
magnitude is a result of the faster computer that we
used. The other two seem to be the product of our
algorithm.

Figure 7 shows another path generated by BFP for
the same mobile robot. The path was generated in
less than § s within a 5127 bitmap representing a
work space with more than 70 randomly constructed
obstacles of arbitrary shapes. This example would
be very difficult (at best) to run with a planner using
a semi-algebraic representation of the work space
and illustrates the power of the distributed represen-
tation approach used in our planner.

BFP is practical only for robots with a small num-
ber n of DOFs—typically, n < 5—because the num-
ber of discrete configurations in a local minimum
well increases exponentially with the dimension of
the configuration space. For such robots, it has two
major advantages:

1. As illustrated earlier, it is extremely fast. Sim-
pler but nontrivial problems than those of Fig-
ures 6 and 7, requiring less complex maneu-
vers, were solved in about Y% s (at a coarse
level of resolution), which can almost be con-
sidered real time.

2. It is deterministically resolution complete (i.e.,
the algorithm generates a path to the goal
whenever a solution exists at the maximal reso-
lution and returns failure if there is no solu-
tion). In both cases, BFP returns control within
some bounded amount of time.

Fig. 7. Path generated among randomly distributed obsta-
cles.

638

At first sight, the experimental efficiency of such a
brute force technique is surprising. In fact, the
potential functions computed in the work space are
designed to be ‘‘perfect’” potential fields for a point
robot, in the sense that they have no other minimum
than the goal. Therefore complex-shaped obstacles
do not directly create local minima of the potential.
Local minima occur only when the work space is so
cluttered that the solution path has to come very
close to the obstacles. However, in such cases,
because the work space potentials computed by NF2
guide the robot along a path where the maneuvering
space is maximized, the local minima usually have a
reduced domain of attraction—i.e., the number of
discrete configurations contained in the local mini-
mum wells is usually small. The best-first search
algorithm therefore fills the wells very quickly.

Remark. Whenever the planner fails to find a path
at some resolution level, it forgets about it and con-
siders the next level of resolution. Because the time
required to explore a coarser grid is small relative to
the time needed for a finer grid, this naive coarse-to-
fine approach is adequate. Nevertheless, one could
imagine another approach where the work done at a
resolution level would be used to guide the work at
the next resolution level. However, the solution of a
path-planning problem is often so versatile with
respect to the resolution of the representation that
the information passed from one resolution level to
the next might be more misleading than helpful.
Moreover, having no interaction among the searches
at the various resolution levels makes it possible to
perform them concurrently on a parallel machine.

a

5. Path Planning for Robots With Many
DOF's

The BFP planner presented in the previous section
cannot efficiently plan motions for robots with many
DOFs. On the other hand, human beings are able to
solve motion-planning problems with a high number
of DOFs. Sometimes redundancy among the DOFs
even seems to simplify planning. Hence there is a
“‘divorce’’ between the exponential-time complexity
of the general path-planning problem and our every-
day life experience. In order to design an efficient
path planner applicable to robots with many DOFs,
it seems that we have to drop the completeness
requirement. In this section we describe the RPP
version of our planner that has demonstrated its
ability to solve many complex planning problems,

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

some being nontrivial for humans. The new algo-
rithm differs from the one of the previous section in
the way it escapes local minima. Rather than filling
up a local minimum, it applies a Monte Carlo proce-
dure that consists of generating Brownian motions
until the minimum is escaped. The resulting planning
algorithm is probabilistically (rather than determin-
istically) resolution complete. For robots with many
DOFs, we used the configuration space potential
defined by formula (2) in our experiments, rather
than the one defined by formula (1). However, the
Monte Carlo procedure itself does not depend on the
particular potential function that is used.

5.1. Overview

Starting from the initial configuration g,,.;; of the
robot, RPP first applies a best-first algorithm (i.e., it
descends the potential U until it reaches a local min-
imum g,.; see section 5.2). We call such a motion a
gradient motion. Let Uy, = U(qioc). If Upe = 0,
the problem is solved, and the planner returns the
constructed path. Otherwise, it attempts to escape
the local minimum by executing a series of random
motions issued from gy,.. These random motions are
approximations of Brownian motions described in
section 5.3.

At the terminal configuration of every random
motion, the algorithm executes a gradient motion
until it reaches a (hopefully) new local minimum.
From each local minimum, if none of them is the
goal, it performs another series of random motions.
The graph of the local minima is thus incrementally
built, the path joining two “‘adjacent’’ local minima
being the concatenation of a random motion and a
gradient motion. A randomized depth-first search of
this graph is performed (see section 5.4) until the
goal configuration is reached or the planner gives
up. If the search terminates successfully, the gener-
ated path is transformed into a smoother path (sec-
tion 5.5).

An interesting property of this planning algorithm
is that all the random motions starting from a given
local minimum can be performed concurrently on a
parallel machine, as there is.no need for communica-
tion among the different processing units.

Because the algorithm uses a random procedure to
build the graph of the local minima, it is not guaran-
teed to find a path whenever one exists. In other
words, the algorithm is not complete. However, the
properties of Brownian motions make it possible to
prove that when the number of Brownian motions
executed from every local minimum is unbounded
(the computation time may then tend toward infin-

ity), the probability to reach the goal converges
toward 1. Hence we say that the algorithm is proba-
bilistically resolution complete. However, this con-
vergence-in-distribution property, which is weli
known for the so-called ‘‘simulated annealing’ algo-
rithms (Geman and Hwang 1986}, is a very weak
one. Indeed, the totally uninformed algorithm that
executes a Brownian motion from the initial configu-
ration ¢;,; and terminates when it enters a small
neighborhood of the goal configuration is also proba-
bilistically resolution complete! Despite the weak-
ness of this theoretical result, our experiments show
that RPP is quite efficient.

We describe the various components of RPP in
more detail in the following sections. We also give
experimental results obtained with the implemented
planner.

5.2. Gradient Motions

The planner operates in the configuration space grid
over which U is defined. In principle, a gradient
motion consists of searching this grid in a best-first
fashion as described in section 4. However, when
the dimension # of the configuration space becomes
large, say n = 6, the n-neighborhood used in section
4 to determine the direction of motion is much too
large to be fully explored at each step. For example,
if n = 10, a configuration has approximately 60,000
n-neighbors; if n = 31, it has over 600 thousands of
billions n-neighbors.

One way to deal with this difficulty is simply to
use a smaller neighborhood—for example, the 1-
neighborhood (two configurations are 1-neighbors iff
only one of their coordinates differs and if it differs
by a single increment of the grid). Then each con-
figuration has only 2n neighbors. However, experi-
mentations showed that this solution is not very
good, because the crude discretization of the neigh-
borhood of a configuration often results in the detec-
tion of a fictitious local minimum.

Another technique consists of using the full »-
neighborhood and checking only a small number of
configurations randomly selected in this neighbor-
hood. At each step of a gradient motion, the n-
neighborhood of the current configuration g is par-
tially explored as follows. A neighbor g’ of g is cho-
sen randomly using a uniform distribution law. If it
is a free configuration (the test is carried out in the
work space as described in section 4) and if U(g') <
U(q), q' is taken as the successor of g along the
path of the gradient motion. (Hence the path may
only follow a rough approximation of the negated
gradient flow.) If ¢ is not free or if U(qg') = U(q),

Barraquand and Latombe 639

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

another neighbor ¢’ is randomly chosen. The num-
ber of iterations is limited to a few tens to a few
hundreds (depending on the value of #). If none of
them generates a successor of g, g is considered to
be a local minimum.

Both techniques mentioned above have been
implemented, and the second one gave much better
results, generating almost no fictitious minima. As a
matter of fact, if the curvature of the surface U =
U(qg) at g is small and if ¢ is not a minimum of U,
then at every iteration, the probability of guessing a
configuration ¢’ such that U(g") < Ul(q) is approxi-
mately equal to 0.5. The probability of finding such
a configuration ¢’ in 10 independent guesses is of
the order of 0.999. Although the number of guesses
may be increased with n, it does not have to be
increased proportionally.

5.3. Random Motions

When the algorithm reaches a local minimum of the
potential field U, we consider that there is no more
information that we can extract locally from U in
order to guess the direction of motion that will lead
us to the goal. Then if we do not make any assump-
tion on the statistics of the obstacle distribution, we
have no additional information for helping us to
reach the goal. RPP continues the search by execut-
ing random motions issued from the current local
minimum g,..

The most uninformed type of motion is known to
be the Brownian motion (Papoulis 1965). Because a
Brownian motion is a continuous stochastic process,
the random motions performed by RPP are approxi-
mations of Brownian motions and are defined as dis-
crete random walks. A random walk in the configu-
ration space consists of executing a certain number ¢
of steps (the ‘‘duration’’ of the random walk). Each
step corresponds to a “‘unit’’ of time and projects
into every g; axis, { € [1, n], as an increment +v; or
—v; of fixed amplitude, each with the constant prob-
ability 0.5 (hence independent of the previous steps).
The amplitude of the increment, v;, is the ‘‘veloc-
ity”’ of the walk along the g; axis. This random walk
is known to converge almost surely toward a
Brownian motion when the amplitude v; of every
increment tends toward 0 (Papoulis 1965).

Without lack of generality, let us take the current
local minimum, ¢,,., as the origin of the coordinates
of €. The configuration attained by a Brownian
motion of duration ¢ and velocity v; along each ¢;
axis is a random variable Q(¢) = (Q:(2), . . .,
0.(1)) with the following properties (Papoulis 1965):

« The density p; of Q;(¢) is the Gaussian distribu-
tion given by:

(1) = —— exp [-2

pl qls - v /—211 p 2V;ZI .

+ The standard deviation D;(¢) of the difference
Q:(t + t9) — Qi) increases proportionally to
the square root of ¢; i.e.,

D(2) = E{[Qi(to + 1) — Q:ta)?} = vit.

« The two processes Q(t') — Q(¢t) and Q") —
Q(t") are independent, for any (¢, ¢, ") such
that r < t' < ¢".

The Brownian motion (also called the Wiener-
Levy process) is well defined as long as it does not
encounter any obstacle in configuration space. When
the process Q(¢) hits the boundary of an obstacle,
the Brownian motion has to be adapted so that it
remains in the free space. The classic generalization
of a Brownian motion when the space is bounded
consists of reflecting the motion that would have
taken place in the absence of boundary, symmetri-
cally to the tangent hyperplane of the boundary at
the collision configuration (Brownian motion with
“‘reflective boundary’”). The mathematic consistency
of this adaptation is discussed in detail in Anderson
and Orey (1976). Our planner, which does not con-
struct an explicit representation of the configuration
space obstacles, does not know the orientation of
the tangent hyperplane at the collision configuration.
Hence whenever a random motion step leads to col-
liding with an obstacle, instead of reflecting the
motion on the boundary, the planner guesses
another random step and substitutes it for the pre-
vious one. Collisions along a Brownian motion are
checked in the work space using the divide-and-con-
quer technique presented in section 4.

We still have to select the velocities v; and the
duration ¢ of every random motion. Because we
approximate a Brownian motion as a random walk
in a grid where the increment along each g, axis is
4;, we would like the standard deviation of each
step to be equal to A;. This leads to choosing v; =
4;. Regarding the duration ¢, we should choose it
such that the generated random motion take the
robot out of the current local minima of U. Let us
define the attractive radius ag,(q...) of any local
minimum ¢, of U along the g; axis as the distance
along g; between gy, and the nearest saddle point of
U in that direction. In order to escape the local min-
imum g;,., the minimum distance that the robot
must travel in each direction g; from g 18 ar(Gioc).

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

If we were able to estimate the statistics of ag,, the
property D;(t) = A;Vf would give us a clue for
choosing 7. The duration of the motion would then

be:

2

~ max (aRi(qloc)) . (3)
€1 A;

However, as we make no assumption on the obsta-
cle distribution, we cannot infer any strong statisti-
cal property about U and ag,. However, in general,
we may assume that the distance ag, for each
parameter g; does not exceed the distance that
would provoke a motion of the robot longer than the
work space diameter (defined by the input bitmap).
This diameter being equal to 1 (with the normalized
L' distance previously used), we obtain the follow-
ing estimate of ag, for any local minimum g,

aRi(qlac) = ll/Jlsup

On the other hand, we have A; = 8/J%,,, where 8 is
the distance between two consecutive points along
the same coordinate axis of the work space. Com-

bining these two formulas with (3), we obtain:

t= ?
We could take ¢ equal to this value. However, this
choice would mean that we implicitly assume that all
the attraction radii are the same, which is not the
case. Instead, we take ag, as the value of a strictly
positive random variable A, whose expected value
is 1/J5.,. The most uninformed distribution (i.e., the
one that maximizes entropy) of a positive random
variable of given expected value is the truncated
Laplace distribution. Therefore we define the den-
sity of Ag, as:

P(GR,-) = J‘;up exp (—JgupaR.')-

This leads to choosing the duration ¢ of a random
motion as the value of a random variable T. The
above density of Ag,, combined with the relation (3),
entails the following density for T:

pQt) = 2—\55 exp (— V). 4)
One can verify that the expected value of this distri-
bution is indeed 1/6°.

In fact, a value of T gives a maximal duration of
the random motion. After each step of the motion,
the planner checks the value of the potential at the
current configuration against U(qgy,.). If it is smaller,
the planner terminates the random motion.

Barraquand and Latombe

Remark. As mentioned at the beginning of this
subsection, executing Brownian motions when the
algorithm reaches a local minimum of the potential
U other than the goal configuration corresponds to
assuming that there is no more local information that
we can extract from U in order to guess the direc-
tion of motion that will lead us toward the goal.
However, higher order derivatives could provide
useful additional information. As a matter of fact, in
Barraquand et al. (1989), we used the concept of
valley (which is based on the first and second deriv-
atives) to escape local minima. The resulting planner
was not very reliable, but the idea of tracking val-
leys for escaping local minima could be reused here
to generate more informed random motions.

d

5.4. Searching the Local Minima Graph

By combining best-first motions and random
motions, RPP can incrementally construct a graph of
the local minima of the potential function U. The
search of this graph can be done using a best-first
strategy. This simply consists of iteratively generat-
ing the successors of the pending local minimum
having the smallest potential value and limiting the
number of random motions issued from the same
minimum to a prespecified number M. A drawback
of this strategy is that the same minimum may be
attained several times, which is difficult and costly
to detect. The strategy may also waste time explor-
ing a local minimum well containing smaller local
minimum wells imbricated in one another.

Another search strategy is the following depth-
first strategy. When a local minimum g, is attained,
a maximum of M random motions are generated.
Each random motion is immediately followed by a
best-first motion that attains a local minimum gj,c. If
U(qisc) = U(qioc), then the planner forgets gjoc;
otherwise, if gj,. is not a goal configuration (in
which case the problem is solved), its successors are
generated in the same fashion. If none of the M
motions issued from g,,. allow the planner to attain
a lower local minimum than g, the latter is consid-
ered to be a dead-end, and the search is resumed at
the most recent local minimum whose M successors
have not all been generated yet (chronologic back-
tracking).

This second search strategy gives better experi-
mental results than the first, but it may still waste
time exploring imbricated minima. Moreover, if a

641

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

low local minimum has been attained (this is the
case in the example shown in Figure 20 later), it
may have difficulty attaining a lower one from it. (It
is not difficult to construct examples where all the
free paths between a very low local minimum and a
goal configuration are quite long and unlikely to be
generated by a single random motion.)

The above strategy can be slightly modified as fol-
lows: Rather than memorizing the whole graph G,
the planner only memorizes the constructed path r
connecting the initial configuration to the current
one (7 is represented at a list of configurations in the
configuration space grid). At every local minimum,
the planner iteratively generates a maximum of M
(typically M = 20) random/best-first motions as
described earlier. As soon as one of them reaches a
lower minimum gj,., it inserts the path from g, to
Gioc at the end of the current path 7 and continues
the search from g/,.. If the M motions are per-
formed and none of them attains a lower minimum,
the planner randomly selects a configuration gpack in
the subset of 7 formed by random motions, using a
uniform distribution law over that subset, and back-
tracks to gsacx. The search is resumed at gpaci by
executing a best-first motion. Because gy« belongs
to the path of a random motion, this best-first
motion may terminate at a new local minimum that
has not been attained so far. (If the first local mini-
mum g, encountered by the planner turns out to be
a dead-end, the above backtracking mechanism can-
not be applied. Then RPP randomly selects one of
the local minima g, attained from g,,. and resumes
the search with a best-first motion starting at a con-

C D
”.L'_'..e!%‘g\
e S S|
(57 TN

Fig. 8. Path generated by RPP for a 3-DOF rectangular
robot.

642

figuration randomly selected along the path of the
random motion leading to g/,..)

A more formal expression of the search carried
out by RPP is given in the following procedure:

procedure RPP-SEARCH;
begin
7« GRADIENT-PATH(Ginit); Gioc < LAST(7);
while q,,. € GOAL do
begin
ESCAPE <« false;
fori = 1 to M until ESCAPE do
begin
t «— RANDOM-TIME;
7, «— RANDOM-PATH(q/,., t);
Grand < LAST(Ti);
7; «— PRODUCT(7;, GRADIENT-
PATH(qmnd)),
Gioc < LAST(7);
if U(qioc) < U(quoc) then
begin
ESCAPE <« true,;
7 « PRODUCT(T, 7);
end;
end;
if ' ESCAPE then
begin
T «<— BACKTRACK(7, 7, . .
Gback < LAST(7);
1 < PRODUCT(7, GRADIENT-

. TM);

PATH(qback)) 5
end;
qroc < LAST(7);
end;
end;
where:

7 is a list of configurations representing the path
constructed so far;

LAST(+) returns the last configuration in a path 7;

PRODUCT(7, 7) returns the list of configura-
tions representing the concatenation 7; ® 7, of
two paths 7; and 75;

GRADIENT-PATH(g) returns the path generated
by a gradient motion starting at g;

RANDOM-PATH(q, ¢) returns the path generated
by a random motion of duration ¢ starting at g;

RANDOM-TIME returns a random duration com-
puted with the distribution defined in formula
4);

BACKTRACK(7, 7, . . ., Ta) selects a back-
tracking configuration and returns the path from
Ginir to this configuration; if 7 includes a subpath
generated by a random motion, then the

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

returned path is a subpath of 7; otherwise it is
a subpath of 7 e 7, with i randomly chosen in
[1, M].

The above search techniques have all been imple-
mented, and the technique described in the proce-
dure RPP-SEARCH gave the best experimental
results.

5.5. Path Optimization

The path produced by the search of the local minima
graph consists of a succession of gradient and ran-
dom motions, both of them containing a large spec-
trum of spatial frequencies. To enable the robot to
execute a graceful motion, the resulting path has to
be smoothed. The smoothing procedure can be theo-
retically described as an optimization problem:
Given an initial path 7, find a new path 7 in the
homotopy class of 7., that minimizes the functional:

J(r) = ﬁ) " Ky,

where K is the quadratic form of the kinetic energy
under the obstacle avoidance constraint, and the two
conditions 7(0) = g and H(T) = ggow. To reduce
the amount of computation, we use a simplified
diagonal form for K, which corresponds to artifi-
cially decoupling the different degrees of freedom.
The geodesics of the corresponding Riemannian met-
ric are simply straight line segments in the general-
ized coordinate system (q,, . . . , gn).

Because any spatial frequency may be present in
the initial path, it is highly preferable to use a mul-
tiscale technique for minimizing J. Our optimization
procedure consists of iteratively modifying the path
Tmir DY replacing subpaths of decreasing lengths with
straight line segments in the configuration space. It
is necessary to check each of the straight line seg-
ments to ensure that it is collision free. The algo-
rithm first checks long segments of the order of the
total length of the path, and then smaller and smaller
ones until the resolution of the configuration space
grid is attained. The final path generated by this
algorithm generally lies in the same homotopy class
as the initial one.

5.6. Experimental Results

We have implemented RPP in a program written in
C language that runs on a DEC 3100 MIPS-based
workstation. Interestingly, the program only consists
of about 1500 lines of code (but it does not include
fancy inputs/outputs). We have experimented suc-

cessfully with RPP using a variety of robot struc-
tures. We have also run the planner to generate
paths for a PUMA robot in our laboratory and for a
dual-arm system in the Stanford Aerospace Robotics
Laboratory. We present here some of the most sig-
nificant experiments. Because the algorithm contains
several random components, neither the running
time of the planner nor the generated solution are
constant across several runs for the same problem.
The times given below are typical times. It is not
unusual for two running times for the same example
to differ by a ratio of 5. The execution times would
be both smaller and much more stable on a parallel
architecture allowing the concurrent execution of
several random motions.

3-DOF Rectangular Robot in 2D Work Space. Fig-
ure § shows a path generated by the planner for a
holonomic rectangular robot in the plane. The reso-
lution of the work space bitmap was 256%. The com-
putation time for this example was approximately
10 s, whereas the best-first planner (BFP) of section
4 takes only a second to solve this same problem.

6-DOF U-Shaped Robot in 3D Work Space. Figure
9 shows snapshots along a path generated by RPP
for a U-shaped robot that can translate and rotate
freely in a three-dimensional work space. The obsta-
cles consist of a parallelepipedic block and a lattice.
Because the work space is bounded, the robot must
“maneuver’’ among the bars of the lattice.

Fig. 9. Path generated by RPP for a 6-DOF U-shaped
robot.

Barraquand and Latombe

Downloadeq from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

8-Revolute-DOF Serial Manipulator Robot in 2D
Work Space. We ran RPP with the planar serial
manipulator shown in Figure 10, which has eight
revolute joints. Figures 11 and 12 show two paths
generated by RPP. In both examples, the goal was
defined by the position of the end point of the last
link of the robot. The potential U was computed
using this point as the only control point. The paths
were generated in approximately 2 minutes for the
first example and 30 seconds for the second, with a
216 work space bitmap. Collisions among the links
were forbidden and checked by the planner.

10-DOF Nonserial Manipulator Robot in 2D Work
Space. We also applied RPP to the planar nonserial
manipulator robot shown in Figure 13, which
includes three prismatic joints (telescopic links) and
seven revolute joints. Figures 14 and 15 illustrate
two different paths of the robot. In both examples,
we used a potential U computed with two control
points located at the end points of the two kinematic
chains. Overlapping of the links was forbidden in the
first example, but not in the second. The first exam-
ple was solved in 3 minutes, whereas the second
was solved in 2 minutes. Both paths were con-
structed with a 256> work space bitmap. The size of
the corresponding configuration space grid is of the
order of 10?° configurations.

31-DOF Nonserial Manipulator Robot in 3D Work
Space. Continuing with our manipulator series, we
experimented with RPP using the 31-DOF manipula-
tor illustrated in Figure 16. This manipulator con-
sists of 10 telescopic links connected by 10 spherical
joints. The bar at the end of the manipulator is con-
nected to the last link by a revolute joint. A path

Fig. 10. Structure of the 8-DOF serial manipulator.

644

8

S
2

Fig. 11. Path generated by RPP for the 8-DOF serial
manipulator (example 1).

¥
&
Z
)

generated by RPP is illustrated in Figure 17. The
potential was computed with two control points
located at the end points of the bar. The computa-
tion time was of the order of 15 minutes. The size of
the work space bitmap was 128, The size of the
corresponding configuration space grid is of the
order of 10%? configurations.

RS
S

TS

_

—

Fig. 12. Path generated by RPP for the 8-DOF serial
manipulator (example 2).

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

Ve

Fig. I3. Structure of the 10-DOF nonserial manipulator
robot.

Coordination of Two 3-DOF Mobile Robots. The
same planner was applied to problems requiring the
coordination of two 3-DOF mobile robots in a two-
dimensional work space made of several corridors.
These are narrow enough so that the two robots
cannot pass each other in the same corridor (Figure
18). The two robots are treated by RPP as a single
two-body robot with 6 DOFs. Figures 19 and 20 dis-
play two paths generated by RPP for two different
problems in the same environment. The second

Fig. 14. Path generated by RPP for the 10-DOF nonserial
manipulator (example I).

Fig. 15. Path generated by RPP for the 10-DOF nonserial
manipulator (example 2).

problem is particularly difficult, because the two
robots have to interchange their positions in the cen-
tral corridor; hence both of them must first move to
an intermediate position in order to allow the permu-
tation. Notice that in the initial configuration, both
robots are rather close to their respective goal con-
figurations, despite the fact that the paths to move
there are not short. This example illustrates the

Fig. 16. Structure of the 31-DOF serial manipulator robot.

Barraquand and Latombe 645

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

Fig. 17. Path generated by RPP for the 31-DOF serial
manipulator.

power of the random techniques used in RPP. The
two paths were generated in about 30 s.

5.7. Discussion

The experiments with RPP have shown that random-
ized planning is both efficient and reliable. The effi-
ciency of RPP results from the fact that a typical
path-planning problem has many solutions, so that a
globally random search procedure can find one if it
is well informed most of the time (by the potential

Fig. 18. The corridor problem for two 3-DOF mobile
robots.

646

Fig. 19. Coordinated path for the corridor problem (exam-
ple 1).

function). In fact, similar randomized techniques
(e.g., '‘simulated annealing’’) have proven to be use-
ful for solving other NP-hard problems—e.g., the
traveling salesman problem (Cerny 1985) and VLSI
placement and routing (Kirkpatrick et al. 1983;
Sechen 1988). In these problems the very large
search space is associated with a large number of
““good’” suboptimal solutions.

AL L)
HEE

Y 0
e

Fig. 20. Coordinated path for the corridor problem (exam-
ple 2).

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

Monte Carlo procedures for optimization have
also been used more or less successfully in Com-
puter Vision. In Geman and Geman (1984), a simu-
lated annealing approach is applied for restoring
images blurred with nonlinear filters. Several
authors have implemented edge detection algorithms
based on the same paradigm. Recently, simulated
annealing has also been applied to higher level prob-
lems in Computer Vision. In Barnard (1988) the
stereo-matching problem is addressed using a hierar-
chical pixel-level simulated annealing algorithm. A
stochastic optimization approach for the three-
dimensional reconstruction of stratigraphic layers
and the detection of geologic faults in seismic data is
proposed in Barraquand (1988).

Nevertheless, RPP behaves very differently from
the classic simulated annealing procedures. On a
sequential computer, simulated annealing procedures
perform a kind of breadth-first search of the graph
of local minima of the function to be optimized,
whereas RPP performs a depth-first search of this
graph using the potential U as the heuristic function.
See Barraquand and Latombe (1989b) for a more
detailed comparison of BFP and simulated anneal-
ing.

Randomized planning has some drawbacks, how-
ever. The planner typically generates different paths
if it is run several times with the same problem, and
the running time varies from one run to another.
Furthermore, if the input path-planning problem
admits no solution, the planner usually has no way
to recognize it, even after a large amount of compu-
tation. Heénce a limit on the running time of the algo-
rithm has to be imposed. However, if this limit is
attained and no path has been generated, there is no
guarantee that no paths exist. However, in practice,
experiments have shown that it is not difficult, for a
given class of problem (e.g., an object moving in a
three-dimensional work space) and a given size of
the configuration space grid, to determine a time
limit (through a series of preliminary trials) such that
if no path has been found by the end of the time
limit, there is little chance that one actually exists.

In Barraquand and Latombe (1989b), we proved
that the randomized planning algorithm implemented
in RPP is probabilistically resolution complete. This
result is based on a general property of the Wiener-
Levy process: Whenever the free space is connected
and relatively compact, the probability for a Brown-
ian motion w with reflective boundary starting at any
initial configuration g;,;, € 4. to reach any given
open subset B of 5., at least once during the inter-
val of time [0,] converges toward 1 when the dura-
tion ¢ tends toward infinity. We can choose B so that

it contains at least one goal configuration and is
small enough that it does not contain a local mini-
mum (other than the goal minimum). From within B,
a gradient motion achieves a goal configuration. See
Barraquand and Latombe (1989b) for more details.

6. Conclusions

In this article we described a new approach to robot
path planning. This approach essentially consists of
(1) discretizing both the work space and the configu-
ration space of the robot into a hierarchical bitmap
and grid; (2) computing numeric navigation functions
over the robot’s work space and combining them
into a ‘‘good’’ potential function in the configuration
space; and (3) building and searching the graph of
the local minima of the configuration space potential
using an efficient technique to escape local minima.
We proposed several techniques for constructing the
potential function and two techniques for escaping
local minima. The most powertul of these two tech-
niques, which is applicable to robots with many
DOFs, is a stochastic process technique based on
the execution of Brownian motions with reflective
boundary.

We have implemented our approach and the var-
ious techniques presented in this article in two pro-
grams, BFP and RPP, which we ran successfully on
many different examples. BFP has solved 3-DOF
robot problems also solved by previous planners,
but several orders’of magnitude faster. It has also
solved problems with may obstacles of arbitrary
shapes that were never attempted before. On the
other hand, RPP has solved a large variety of prob-
lems that fall far outside the range of the capabilities
of any other previous planner (¢.g., problems with 8-
DOF, 10-DOF, and 31-DOF robots and multirobot
problems).

The algorithms implemented in RPP are highly
parallelizable. A preliminary investigation of the par-
allelization of the planner has been conducted in
Barraquand and Latombe (1989b) and in Métivier
and Urbschat (1990). We envision an implementation
of RPP using a specific hardware system, which
should permit real-time path planning. Such a sys-
tem would open new perspectives on some key
issues in robotics related to the interaction of plan-
ning and execution in partially known and dynami-
cally changing environments.

In addition to implementing a real-time planner,
we currently conduct research aimed at using the
randomized planning approach for planning manipu-
lation tasks (Alami et al. 1989) involving grasping

Barraquand and Latombe 647

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

and regrasping operations on movable objects with
multiple robots.

Acknowledgments

This research was funded by DARPA contract
DAAA21-89-C0002 (U.S. Army), DARPA contract
NO00014-88-K-0620 (Office of Naval Research),
SIMA (Stanford Institute of Manufacturing and
Automation), CIFE (Center for Integrated Facility
Engineering), and Digital Equipment Corporation.
The authors also thank Professor I. M. Harrison
(Stanford Graduate School of Business) and J.
Chang (Stanford Statistical Consulting Service) for
their helpful advice on Brownian motions with
reflective boundaries. Bruno Langlois also provided
useful suggestions.

References

Aho, A. V., Hopcroft, J. E., and Ullman, J. D. 1983,
Data Structures and Algorithms. Reading, MA: Addi-
son-Wesley,

Alami, R., Siméon, T., and Laumond, J. P. 1989. A geo-
metrical approach to planning manipulation tasks—the
case of discrete placements and grasps. In Miura, H.,
and Arimoto, S. (eds.): Robotics Research 5. Cam-
bridge, MA: MIT Press, pp. 453—463.

Anderson, R. F., and Orey, S. 1976. Small random pertur-
bations of dynamical systems with reflecting boundary.
Nagoya Math. J. 60:189-216.

Barnard, S. T. 1988. Stochastic stereo matching over
scale. Int. J. Computer Vision. 2(4).

Barraquand, J. 1988. Markovian random fields in com-
puter vision: Applications to seismic data understand-
ing. Ph.D. dissertation. Dept. of Computer Vision,
INRIA, Sophia-Antipolis, France. In French.

Barraquand, J., Langlois, B., and Latombe, J. C. 1989.
Robot motion planning with many degrees of freedom
and dynamic constraints. In Miura, H., and Arimoto, S.
(eds.): Robotics Research 5. Cambridge, MA: MIT
Press, pp. 435-444.

Barraquand, J., and Latombe, J. C. 1989a. On nonholo-
nomic mobile robots and optimal maneuvering. Revue
d’Intelligence Artificielle 3(2):77-103. (Also in Proc. of
the 4th IEEE Int. Symp. on Intelligent Control, Albany,
NY: pp. 340-347.)

Barraquand, J., and Latombe, J. C. 1989b. Robor Motion
Planning: A Distributed Representation Approach.
Report no. STAN-CS-89-1257. Dept. of Computer Sci-
ence, Stanford University.

Barraquand, J., and Latombe, J. C. 1990. Controllability
of mobile robots with kinematic constraints. Rep. no.
STAN-CS-90-1317. Dept. of Computer Science, Stan-
ford University.

Brooks, R. A., and Lozano-Pérez, T, 1983 (Karlsruhe). A
subdivision algorithm in configuration space for find-

path with rotation. Proc. of the 8th Int. Joint Conf. on
Artificial Intelligence, pp. 799-806.

Canny, J. F. 1988. The Complexity of Robot Motion Plan-
ning. Cambridge, MA: MIT Press.

Cerny, V. 1985. Thermodynamical approach to the travel-
ing salesman problem: An efficient simulation algorithm.
J. Optimization Theory Applications. 45(1):41-51.

Donald. B. R. 1984, Motion planning with six degrees of
freedom. Tech. rep. 791. Artificial Intelligence Labora-
tory, MIT.

Erdmann, M., and Lozano-Pérez, T. 1986. On multiple
moving objects. Al memo no. 883. Artificial Intelligence
Laboratory, MIT.

Faverjon, B. 1984 (Atlanta). Obstacle avoidance using an
octree in the configuration space of a manipulator.
Proc. of the IEEE Int. Conf. on Robotics and Automa-
tion, pp. 504-512.

Faverjon, B. 1986 (San Francisco). Object level program-
ming of industrial robots. Proc. of the IEEE Int. Conf.
on Robotics and Automation, pp. 1406-1412.

Faverjon, B., and Tournassoud, P. 1987 (Raleigh, NC). A
local based approach for path planning of manipulators
with a high number of degrees of freedom. Proc. of the
IEEFE Int. Conf. on Automation and Robotics, pp.
1152-1159.

Geman. D., and Geman, S. 1984. Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of
images. IEEE Trans. Pattern Analysis Machine Intelli-
gence PAMI-6:721-741.

Geman, S., and Hwang, C. R. 1986. Diffusions for global
optimization. SIAM J. Control Optimization 24(5).

Gouzénes, L. 1984, Strategies for solving collision-free
trajectories problems for mobile and manipulator robots.
Int. J. Robot. Res. 3(4).51-65.

Kant, K., and Zucker, S. W. 1986. Toward efficient tra-
jectory planning: Path velocity decomposition. Int. J.
Robot. Res. 5:72-89.

Khatib, O. 1986. Real-time obstacle avoidance for manipu-
lators and mobile robots. Int. J. Robot. Res. 5(1):90-98.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. 1983.
Optimization by simulated annealing. Science 220:671-
680.

Koditschek, D. E. 1987 (Raleigh, NC). Exact robot navi-
gation by means of potential functions: Some topologi-
cal considerations. Proc. of the IEEE Int. Conf. on
Robotics and Automation, pp. 1-6.

Latombe, J. C. 1990. Robot Motion Planning. Boston:
Kluwer Academic Publishers.

Laugier, C., and Germain, F. 1985 (Tokyo). An adaptative
collision-free trajectory planner. Int. Conf. on Advanced
Robotics.

Lee, D. T., and Drysdale, R. L. 1981. Generalization of
Voronoi diagrams in the plane. SIAM J. Computing
10:73-87.

Lozano-Pérez, T. 1983. Spatial planning: A configuration
space approach. IEEE Trans. Computers C-32(2):108-
120.

Lozano-Pérez, T. 1987. A simple motion-planning algo-

The International Journal of Robotics Research

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

rithm for general robot manipulators. IEEE J. Robot.
Automat. RA-3(3):224-238.

Lumelsky, V. 1987 (Los Angeles). Algorithmic issues of
sensor-based robot motion planning. Proc. of the 26th
IEEE Conf. on Decision and Control, pp. 1796-1801.

Métivier, C., and Urbschat, R. 1990. Run-time statistical
analysis of a robot motion planning algorithm. Internal
technical note. Robotics Laboratory, Dept. of Computer
Science, Stanford University.

Nilsson, N. J. 1980. Principles of Artificial Intelligence.
Los Altos, California: Morgan Kaufmann.

O’Donnell, P. A., and Lozano-Pérez, T. 1989 (Scottsdale,
AZ). Deadlock-free and collision-free coordination of
two robot manipulators. Proc. of the IEEE Int. Conf. on
Robotics and Automation, pp. 484-489,

()’Dt’mlaing, C., Sharir, M., and Yap, C. K. 1983 (Bos-
ton). Retraction: A new approach to motion planning.
Proc. of the 15th ACM Symp. on the Theory of Com-
puting, pp. 207-220.

Papoulis, A. 1965. Probability, Random Variables, and
Stochastic Processes. New York: McGraw-Hill.

Reif, J. H. 1979. Complexity of the mover’s problem and
generalizations. Proc. of the 20th Symp. on the Founda-
tions of Computer Science, pp. 421-427.

Rimon, E., and Koditschek, D. E. 1989 (Scottsdale, AZ).
The construction of analytic diffeomorphisms for exact
robot navigation on star worlds. Proc. of the IEEE Int.
Conf. on Robotics and Automation, pp. 21-26.

Schwartz, J. T., and Sharir, M. 1983a. On the piano mov-
ers’ problem: I. The case of a two-dimensional rigid
polygonal body moving amidst polygonal barriers.
Comm. Pure Applied Math. 36:345-398.

Schwartz, J. T., and Sharir, M. 1983b. On the piano mov-
ers’ problem: II. General techniques for computing
topological properties of real algebraic manifolds. Adv.
Applied Math. 4:298-351.

Schwartz, J. T., and Sharir, M. 1983c. On the piano mov-
ers’ problem: III. Coordinating the motion of several
independent bodies: The special case of circular bodies
moving amidst polygonal barriers. Int. J. Robot. Res.
2(3):46-75.

Schwartz, J. T., and Sharir, M. 1988. A survey of motion
planning and related geometric algorithms. Artificial
Intelligence 37(1-3):157-169.

Schwartz, J. T., Sharir, M., and Hopcroft, J. 1987. Plan-
ning, Geometry, and Complexity of Robot Motion. Nor-
wood, NJ: Ablex.

Sechen, C. 1988. VLSI Placement and Global Routing
Using Simulated Annealing. Boston, MA: Kluwer Aca-
demic Publishers.

Serra, J. 1982. Image Analysis and Mathematical Mor-
phology. New York: Academic Press.

Zhu, D., and Latombe, J. C. 1989. New heuristic algo-
rithms for efficient hierarchical path planning. Rep. no.
STAN-CS-89-1279. Dept. of Computer Science, Stan-
ford University.

Barraquand and Latombe 649

Downloaded from ijr.sagepub.com by Matthew Mason on October 9, 2012

http://ijr.sagepub.com/

